Table of contents

<u>α-Enolic dithioesters: an attractive platform for the synthesis of functionalized heterlocycles Maya Shankar Singh</u> 1. Introduction 2. Synthesis of β -keto/ α -enolic dithioesters 3. Reactivity profile of β -keto/ α -enolic dithioesters 4. Functionalization of β -keto/ α -enolic dithioesters 5. Synthetic applications of β -keto/ α -enolic dithioesters 6. Summary and outlook 7. Conclusion and outlook Acknowledgements References	1
Hypervalent iodine(III) reagents in the synthesis of heterocyclic compounds Rajnish Budhwan, Gaurav Garg, Irishi N. N. Namboothiri, Sandip Murarka 1. Introduction 2. De novo synthesis of heterocycles using hypervalent iodine(III) reagents 2.1. Synthesis of three and four membered heterocycles 2.1.1. Synthesis of oxiranes and oxetanes 2.2. Synthesis of five and six membered heterocycles 2.2.1. Synthesis of pyrroles, pyrrolidines, imidazoles and pyrazoles 2.2.2. Synthesis of oxazoles, isoxazoles, oxazolines and isooxazolines 2.2.3. Synthesis of furans, oxadiazoles and thiadizoles 2.2.4. Synthesis of six membered heterocycles 2.3.1. Synthesis of substituted benzimidazoles 2.3.2. Synthesis of substituted benzimidazoles 2.3.3. Synthesis of substituted duinoxalines, quinolinones and isoquinolinones 2.3.4. Synthesis of Indoles and Indolines 2.4. Synthesis of lactones and lactams 2.4.1. Racemic synthesis of substituted lactones 2.4.2. Enantioselective synthesis of lactones 2.4.3. Synthesis of spiro-heterocycles 3. Conclusions Acknowledgements References	27
Recent progress in the chemistry of polyazidoazines Sergei V. Chapyshev 1. Introduction 2. High-energy polyazidoazines 3. Heterocyclic nanostructures from polyazidoazines 4. Reactivity of polyazidoazines 5. Organic molecular magnets from polyazidoazines 6. Conclusion Acknowledgement References	53

Synthesis of sugars and steroids conjugates via 1,3-dipolar cycloaddition reactions of nitrile oxides	70
Joaquín Plumet	
1. Introduction and objectives	
2. Sugars conjugates	
2.1. Intermolecular cycloadditions	
2.2. Intramolecular cycloadditions	
3. Steroids conjugates	
4. Conclusions	
Acknowledgement	
References and notes	
Synthesis of heterocyclic compounds by photochemical cyclizations	92
Ana G. Neo	
1. Introduction	
2. Photochemical cyclizations in oxidative conditions	
2.1. Application for the synthesis of molecules with biological properties	
2.2. Application for the design of new materials	
3. Photochemical cyclizations in the presence of a base	
3.1. Application for the synthesis of molecules with biological properties	
3.2. Application for the design of new materials	
4. Cyclization/dehalogenation and related	
5. Miscellaneous	
6. Conclusion	
Acknowledgement	
References	
Thiazole cores as organic fluorophore units: synthesis and fluorescence	116
Nataliya Belskaya, Irena Kostova, Zhijin Fan	110
1. Introduction	
2. Synthesis of fluorescent thiazoles	
2.1. Main approaches to thiazole core construction	
2.1.1. Erlenmeyer method for thiazole ring construction	
2.1.2. Different methods for thiazole ring construction	
2.2. Modification of the thiazole core	
2.2.1. Aryl/heteroarylation of the thiazole ring	
2.2.2. Alkylation of hydroxythiazoles	
2.2.3. Introduction of substituents containing C=C, C=N, and N=N bonds	
2.3. Complexation of thiazole derivatives	
3. Photophysical properties	
3.1. 4-Hydroxythiazoles as chromophores and fluorophores	
3.2. Photophysical properties of 2- and 5-aminothiazoles	
3.3. Thiazoles with flexible conjugated systems	
4. Photoswitches based on 1,3-thiazole derivatives	
5. Cation sensors	
6. pH-sensitive thiazole fluorescence	
7. Conclusions	
Acknowledgements	
References	
2,1,3-Benzochalcogenadiazoles: regularities and peculiarities over a whole chalcogen pentad	143
O, S, Se, Te and Po	143
Elena A. Pritchina, Nina P. Gritsan, Oleg A. Rakitin, Andrey V. Zibarev	
Diena I. I ruenna, runa I. Orusan, Oteg II. Itanun, ruurey v. Zivarev	

 Introduction Neutral molecules Radical anions Radical cations Conclusion Acknowledgements References 	
Heteroaromatic motifs in resorcinarene-derived cavitand receptors: structural and functional David Lozano, Agustí Lledó 1. Introduction 2. Synthesis of resorcin[4]arene derived cavitands 3. Cavitands with 1,3-diazine walls 3.1. Quinoxaline-type cavitands 3.2. Stimuli-responsive cavitands 3.3. Self-assembling pyrazine-based cavitands 4. Cavitands with benzo-fused heterocyclic walls 4.1. 1,3-Dihydro-2H-benzo[d]imidazol-2-one walls 4.2. 1H-Benzo[d]imidazole walls 5. Functionalized cavitands 5.1. Functionalized cavitands with 1,3-diazine walls 5.2. Dissymmetric cavitands with singular 1H-benzo[d]imidazole walls 5.3. The introverted acid cavitand 5.4. Metal-functionalized cavitands with heterocyclic coordination motifs 6. Conclusions Acknowledgements	155
Synthesis and synthetic applications of o-benzenedisulfonimide and its derivatives Margherita Barbero, Stefano Dughera 1. Introduction 2. o-Benzenedisulfonimide as Brønsted acid catalyst in acid-catalysed organic reactions 2.1. Theoretical and experimental studies on o-benzenedisulfonimide pKa 2.2. o-Benzenedisulfonimide as catalyst in multicomponent heterocycle syntheses 2.3. o-Benzenedisulfonimide as catalyst in common acid-catalysed organic syntheses 3. Synthesis and synthetic applications of o-benzenedisulfonimide derivatives 3.1. Chiral derivatives of o-benzenedisulfonimide 3.2. Silica-supported o-benzenedisulfonimide 3.3. Miscellaneous studies 4. Synthesis and synthetic applications o-benzenedisulfonimide salts 4.1. Arenediazonium o-benzenedisulfonimides 4.1.1. Sandmeyer cyanation 4.1.2. Palladium catalysed cross-coupling reactions 4.1.3. Gold catalysed cross-coupling reactions 4.1.4. Azo-coupling reactions 4.2. Aryl (or heteroaryl) indol-3-ylmethylium o-benzenedisulfonimides 4.3. o-Benzenedisulfonimide-based ionic liquids 5. Miscellaneous studies on o-benzenedisulfonimide derivatives 6. Conclusion Acknowledgement References	178

Synthetic strategies for the synthesis of indoloquinoline natural products	201
Magne O. Sydnes	
1. Introduction	
2. Quinindoline	
3. Neocryptolepine	
4. Quindoline	
5. Cryptolepine	
6. 11-Isopropylcryptolepine	
7. Quindolinone	
8. Cryptolepinone	
9. Isocryptolepine	
10. Conclusion	
Acknowledgment	
References	
Synthesis of biologically relevant heterocyclic compounds through the chemistry of selenium	220
Luana Bagnoli	
1. General considerations of selenium chemistry applied to the synthesis of heterocycles	
2. Synthesis of heterocyclic compounds through asymmetric cyclization inducted by chiral substrates	
2.1. Asymmetric synthesis of nitrogen heterocyclic compounds	
2.2. Asymmetric cyclization reactions for the synthesis of pseudo- oligosaccharides	
3. Domino processes for the synthesis of heterocycles using vinyl selenones	
3.1. Asymmetric domino processes for the synthesis of enantiopure 1,4-dioxanes, morpholines,	
thiomorpholines and piperazines.	
3.2. Domino processes for the synthesis of six and seven-membered benzo-1,4-heterocyclic compounds	,
3.3. Domino processes for the synthesis of heterocycle-fused indoles	
4. Conclusion	
Acknowledgement References	
References	
[3+2]-Annulation reactions with nitroalkenes in the synthesis of aromatic five-membered	237
<u>nitrogen heterocycles</u>	
Vladimir A. Motornov, Sema L. Ioffe, Andrey A. Tabolin	
1. Introduction	
2. Classification of nitroalkene-based annulation reactions	
3. Annulations with nitroalkenes in the synthesis of five-membered rings	
3.1. Synthesis of pyrroles	
3.1.1. Barton-Zard pyrrole synthesis	
3.1.2. Annulation with enamines	
3.1.3. Annulation with azomethine ylides	
3.2. Synthesis of pyrazoles	
3.2.1. Nitroalkene-diazocompounds [3+2]-cycloadditions	
3.2.2. Oxidative annulation of nitroalkenes with hydrazones	
3.3. Synthesis of imidazoles and imidazo[1,2-a]pyridines	
3.4. Synthesis of indolizines and related heterocycles	
3.5. Synthesis of 1,2,3-triazoles	
3.5.1. Synthesis of NH-1,2,3-triazoles	
3.5.2. Synthesis of 1,5-disubstituted 1,2,3-triazoles 4. Conclusions	
Acknowledgement	
1 tention reagoniciti	

References

1,3-Dipolar cycloadditions to cyclopropenes: convenient way for the synthesis	261
of heterocyclic systems Vitali M. Poitson, Sonon V., Vyazmin, Alexander V. Stenakov	
Vitali M. Boitsov, Sergey Yu. Vyazmin, Alexander V. Stepakov 1. Introduction	
2. Diazocompounds	
3. Azides	
4. Azomethine imines	
5. Nitrile imines	
6. Nitrile oxides	
7. Nitrones	
8. Carbonyl ylides	
9. Azomethine ylides	
10. Immonium ylides	
11. Asymmetric formal [3+3]-cycloaddition reactions 12. Conclusions	
Acknowledgement	
References	
References	
The double reductive amination approach to the synthesis of polyhydroxypiperidines	283
Camilla Matassini, Francesca Clemente, Francesca Cardona	
1. Introduction	
2. Sugar-derived substrates	
2.1. Dialdehydes	
2.2. Ketoaldehydes	
2.3. Diketones	
3. Not sugar-derived substrates	
4. Conclusions	
Acknowledgements References	
References	
Palladium catalyzed syntheses of fused tricyclic heterocycles: a personal account	302
Alessandra Casnati, Elena Motti, Raffaella Mancuso, Bartolo Gabriele, Nicola Della Ca'	
1. Introduction	
2. Palladium/norbornene cooperative catalysis (Catellani Reactions)	
2.1. Synthesis of carbazoles and phenanthridines	
2.2. Synthesis of dibenzofurans and dibenzopyrans	
2.3. Synthesis of dibenzoazepines	
2.3.1. DFT studies	
3. PdI ₂ /KI-catalyzed oxidative carbonylation processes	
3.1. Synthesis of dibenzooxazocinones3.2. Synthesis of furoindolones and furobenzofuranones	
3.3. Synthesis of benzimidazopyrimidinones, benzimidazoimidazoles and benzimidazothiazoles	
4. Conclusion	
Acknowledgement	
References	
Synthesis of octahydrobenzo-1,2,3-diazaphospholidine-2-oxides and their derivatives:	324
applications in asymmetric synthesis	
Carlos Cruz-Hernández, José M. Landeros, Eusebio Juaristi	
 Introduction Synthesis of the octahydrobenzo-1,3,2-diazaphospholidine-2-oxides 	
2. Synthesis of the octanydrobenzo-1,5,2-drazaphosphondine-2-oxides 2.1. Conformational and configurational assignments	

V1	
3. Applications in asymmetric synthesis 3.1. Octahydrobenzo-1,3,2-diazaphospholidine-2-oxide as chiral auxiliary 3.1.1. Phosphoryl group as a carbanion stabilizer in α - and γ -functionalization 3.1.2. Phosphoryl moiety as activating group for electrophilic addition in β -functionalization 3.2. Chiral phosphoramides as Lewis bases 3.3. Phosphoramides as chiral organocatalysts 3.3.1. Asymmetric aldol reactions 3.3.2. Asymmetric Michael addition reactions 3.3.3. Asymmetric cascade processes 4. Conclusions Acknowledgement References	
Intramolecular Mizoroki-Heck reaction in the synthesis of heterocycles:	340
strategies for the generation of tertiary and quaternary stereocenters	210
Iratxe Barbolla, Esther Lete, Nuria Sotomayor	
1. Introduction	
2. Intramolecular Mizoroki-Heck reaction for the generation of stereocenters	
2.1. Approaches based on blocking the β-hydride elimination: cyclic alkenes as coupling partners 2.2. Approaches based on blocking the β-hydride elimination: tri- and tetrasubstituted acyclic alkenes	es
ascoupling partners 2.3. Approaches based on the use of a leaving group: allylsilanes, ethers, esters, and boronates as co partners	upling
3. Cascade reactions initiated by intramolecular carbopalladation 3.1. Reductive Heck cyclizations	
3.2. Carbopalladation followed by nucleophilic trapping3.3. Heck/Heck processes	
3.4. Carbopalladation followed by other couplings	
4. Conclusion	
Acknowledgements References	
Cobalt catalyzed (sp²) C-H activation reactions with multi-unsaturated substrates for five-	363
and six-membered nitrogen heterocycle synthesis Subban Kathiravan, Ian A. Nicholls	
1. Introduction	
2. C-H activation with carboxamides	
3. C-H activation with phosphinamides	
4. C-H activation with sulfonamides	
5. C-H activation for five memberered heterocycles	
6. Conclusion	
Acknowledgement	
References	

384

Synthesis and use of halodifluoromethyl heterocycles

Marco Colella, Pantaleo Musci, Renzo Luisi, Leonardo Degennaro

- 1. Introduction
- 2. Synthesis and use of halodifluoromethyl-substituted pyrazoles
- 2.1. N-CXF₂ substituted pyrazoles
- 2.2. *C*-CXF₂ substituted pyrazoles
- 3. Synthesis and use of *N*-halodifluoromethyl-substituted imidazoles
- 4. Synthesis and use of 5-(bromodifluoromethyl)-1,2,4-oxadiazoles

- 5. Synthesis and use of halodifluoromethyl-substituted pyridines
- 5.1. *C*-CXF₂ substituted pyridines
- 5.2. *N*-CXF₂ substituted pyridines
- 6. Synthesis and use of halodifluoromethyl-substituted thiazoles
- 7. Synthesis and use of 2-(bromodifluoromethyl)benzoxazoles
- 8. Synthesis and use of *N*-bromo- and *N*-chlorodifluoromethyl benzimidazoles
- 9. Synthesis and use of bromodifluoromethyl benzofurans
- 10. Synthesis and use of bromodifluoromethyl substituted 1,3-imidazolines and 1,3-oxazolines
- 11. Synthesis and use of bromodifluoromethyl substituted β -lactams
- 12. Synthesis and use of bromodifluoromethyl substituted sugars
- 13. Conclusions

References